
Yocto Project and OpenEmbedded Training

Yocto Project and
OpenEmbedded Training

Free Electrons

© Copyright 2004-2015, Free Electrons.
Creative Commons BY-SA 3.0 license.
Latest update: April 30, 2015.

Document updates and sources:
http://free-electrons.com/doc/training/yocto

Corrections, suggestions, contributions and translations are welcome!
Send them to feedback@free-electrons.com

Embedded Linux
Developers

Free Electrons

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 1/253

http://free-electrons.com/doc/training/yocto
mailto:feedback@free-electrons.com

Rights to copy

© Copyright 2004-2015, Free Electrons
License: Creative Commons Attribution - Share Alike 3.0
http://creativecommons.org/licenses/by-sa/3.0/legalcode

You are free:

I to copy, distribute, display, and perform the work

I to make derivative works

I to make commercial use of the work

Under the following conditions:

I Attribution. You must give the original author credit.

I Share Alike. If you alter, transform, or build upon this work, you may distribute
the resulting work only under a license identical to this one.

I For any reuse or distribution, you must make clear to others the license terms of
this work.

I Any of these conditions can be waived if you get permission from the copyright
holder.

Your fair use and other rights are in no way affected by the above.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 2/253

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Hyperlinks in the document

There are many hyperlinks in the document

I Regular hyperlinks:
http://kernel.org/

I Kernel documentation links:
Documentation/kmemcheck.txt

I Links to kernel source files and directories:
drivers/input

include/linux/fb.h

I Links to the declarations, definitions and instances of kernel
symbols (functions, types, data, structures):
platform_get_irq()

GFP_KERNEL

struct file_operations

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 3/253

http://kernel.org/
http://free-electrons.com/kerneldoc/latest/kmemcheck.txt
http://lxr.free-electrons.com/source/drivers/input
http://lxr.free-electrons.com/source/include/linux/fb.h
http://lxr.free-electrons.com/ident?i=platform_get_irq
http://lxr.free-electrons.com/ident?i=GFP_KERNEL
http://lxr.free-electrons.com/ident?i=file_operations

Free Electrons at a glance

I Engineering company created in 2004
(not a training company!)

I Locations: Orange, Toulouse, Lyon (France)

I Serving customers all around the world
See http://free-electrons.com/company/customers/

I Head count: 9
Only Free Software enthusiasts!

I Focus: Embedded Linux, Linux kernel, Android Free Software
/ Open Source for embedded and real-time systems.

I Activities: development, training, consulting, technical
support.

I Added value: get the best of the user and development
community and the resources it offers.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 4/253

http://free-electrons.com/company/customers/

Free Electrons on-line resources

I All our training materials:
http://free-electrons.com/docs/

I Technical blog:
http://free-electrons.com/blog/

I Quarterly newsletter:
http://lists.free-

electrons.com/mailman/listinfo/newsletter

I News and discussions (Google +):
https://plus.google.com/+FreeElectronsDevelopers

I News and discussions (LinkedIn):
http://linkedin.com/groups/Free-Electrons-4501089

I Quick news (Twitter):
http://twitter.com/free_electrons

I Linux Cross Reference - browse Linux kernel sources on-line:
http://lxr.free-electrons.com

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 5/253

http://free-electrons.com/docs/
http://free-electrons.com/blog/
http://lists.free-electrons.com/mailman/listinfo/newsletter
http://lists.free-electrons.com/mailman/listinfo/newsletter
https://plus.google.com/+FreeElectronsDevelopers
http://linkedin.com/groups/Free-Electrons-4501089
http://twitter.com/free_electrons
http://lxr.free-electrons.com

Generic course information

Generic course
information
Free Electrons

© Copyright 2004-2015, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Developers

Free Electrons

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 6/253

Hardware used in this training session

BeagleBone Black, from CircuitCo

I Texas Instruments AM335x (ARM Cortex-A8)

I Powerful CPU, with 3D acceleration,
additional processors (PRUs) and lots of
peripherals.

I 512 MB of RAM

I 2 GB of on-board eMMC storage
(4 GB in Rev C)

I USB host and USB device ports

I microSD slot

I HDMI port

I 2 x 46 pins headers, with access to many
expansion buses (I2C, SPI, UART and more)

I A huge number of expansion boards, called
capes. See http://beagleboardtoys.com/.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 7/253

http://beagleboardtoys.com/

Do not damage your BeagleBone Black!

I Do not remove power abruptly:
I Boards components have been damaged by removing the

power or USB cable in an abrupt way, not leaving the PMIC
the time to switch off the components in a clean way. See
http://bit.ly/1FWHNZi

I Reboot (reboot) or shutdown (halt) the board in software
when Linux is running.

I You can also press the RESET button to reset and reboot.
I When there is no software way, you can also switch off the

board by pressing the POWER button for 8 seconds.

I Do not leave your power board on a metallic surface (like a
laptop with a metal finish).

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 8/253

http://bit.ly/1FWHNZi

Course outline - Day 1

First dive into the Yocto Project.

I Overview of an embedded Linux system architecture.

I Organization of the Yocto Project source tree.

I Customizing an image.

I Building an image.

Labs: download the Yocto project sources, compile an image and
flash the development board.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 9/253

Course outline - Day 2

Recipes and layers details: write, use, customize.

I Recipes syntax. Writing a recipe.

I Development workflow in the Yocto Project with BitBake.

I Adding packages to the generated image.

I The Yocto Project layers. Adding a new layer.

Labs: add a custom application and its recipe to the build system,
create a new layer.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 10/253

Course outline - Day 3

The Yocto Project as a BSP provider.

I Extending a recipe.

I Writing your own machine configuration.

I Adding a custom image.

I Using the SDK with Eclipse.

Labs: integrate kernel changes into the build system, write a
machine configuration, create a custom image, experiment with
the SDK.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 11/253

Participate!

During the lectures...

I Don’t hesitate to ask questions. Other people in the audience
may have similar questions too.

I This helps the trainer to detect any explanation that wasn’t
clear or detailed enough.

I Don’t hesitate to share your experience, for example to
compare Linux / Android with other operating systems used
in your company.

I Your point of view is most valuable, because it can be similar
to your colleagues’ and different from the trainer’s.

I Your participation can make our session more interactive and
make the topics easier to learn.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 12/253

Practical lab guidelines

During practical labs...

I We cannot support more than 8 workstations at once (each
with its board and equipment). Having more would make the
whole class progress slower, compromising the coverage of the
whole training agenda (exception for public sessions: up to 10
people).

I So, if you are more than 8 participants, please form up to 8
working groups.

I Open the electronic copy of your lecture materials, and use it
throughout the practical labs to find the slides you need again.

I Don’t copy and paste from the PDF slides.
The slides contain UTF-8 characters that look the same as
ASCII ones, but won’t be understood by shells or compilers.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 13/253

Cooperate!

As in the Free Software and Open Source community, cooperation
during practical labs is valuable in this training session:

I If you complete your labs before other people, don’t hesitate
to help other people and investigate the issues they face. The
faster we progress as a group, the more time we have to
explore extra topics.

I Explain what you understood to other participants when
needed. It also helps to consolidate your knowledge.

I Don’t hesitate to report potential bugs to your instructor.

I Don’t hesitate to look for solutions on the Internet as well.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 14/253

Command memento sheet

I This memento sheet gives
command examples for the most
typical needs (looking for files,
extracting a tar archive...)

I It saves us 1 day of UNIX / Linux
command line training.

I Our best tip: in the command line
shell, always hit the Tab key to
complete command names and file
paths. This avoids 95% of typing
mistakes.

I Get an electronic copy on
http://free-electrons.com/

doc/training/embedded-

linux/command_memento.pdf

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 15/253

http://free-electrons.com/doc/training/embedded-linux/command_memento.pdf
http://free-electrons.com/doc/training/embedded-linux/command_memento.pdf
http://free-electrons.com/doc/training/embedded-linux/command_memento.pdf

vi basic commands

I The vi editor is very useful to
make quick changes to files in an
embedded target.

I Though not very user friendly at
first, vi is very powerful and its
main 15 commands are easy to
learn and are sufficient for 99% of
everyone’s needs!

I Get an electronic copy on
http://free-electrons.com/

doc/training/embedded-

linux/vi_memento.pdf

I You can also take the quick tutorial
by running vimtutor. This is a
worthy investment!

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 16/253

http://free-electrons.com/doc/training/embedded-linux/vi_memento.pdf
http://free-electrons.com/doc/training/embedded-linux/vi_memento.pdf
http://free-electrons.com/doc/training/embedded-linux/vi_memento.pdf

Practical lab - Training Setup

Prepare your lab environment

I Download the lab archive

I Enforce correct permissions

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 17/253

Introduction to embedded Linux build systems

Introduction to
embedded Linux
build systems
Free Electrons

© Copyright 2004-2015, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Developers

Free Electrons

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 18/253

Introduction to embedded Linux build systems

Embedded Linux distribution projects

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 19/253

Build system definition

I Purposes of a build system:
I Compiling or cross-compiling applications.
I Packaging applications.
I Testing output binaries and ecosystem compatibility.
I Deploying generated images.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 20/253

Available system building tools

Large choice of tools

I Buildroot, developed by the community
http://www.buildroot.org

I PTXdist, developed by Pengutronix
http://pengutronix.de/software/ptxdist/

I OpenWRT, originally a fork of Buildroot for wireless routers, now a
more generic project
http://www.openwrt.org

I OpenEmbedded based build systems
http://www.openembedded.org:

I Poky (from the Yocto Project)
I Arago Project
I Ångström

I Vendor specific tools (silicon vendor or embedded Linux vendor)

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 21/253

http://www.buildroot.org
http://pengutronix.de/software/ptxdist/
http://www.openwrt.org
http://www.openembedded.org

Comparison of distribution projects

I Buildroot
I Simple to use.
I Adapted for small embedded devices.
I Not perfect if you need advanced functionalities and multiple

machines support.
I http://buildroot.org/

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 22/253

http://buildroot.org/

Comparison of distribution projects

I OpenWRT
I Based on Buildroot.
I Primarily used for embedded network devices like routers.
I http://openwrt.org/

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 23/253

http://openwrt.org/

Comparison of distribution projects

I Poky
I Part of the Yocto Project.
I Using OpenEmbedded.
I Suitable for more complex embedded systems.
I Allows lots of customization.
I Can be used for multiple targets at the same time.
I http://yoctoproject.org/

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 24/253

http://yoctoproject.org/

Introduction to embedded Linux build systems

Build system benefits

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 25/253

Working without a build system

I Each application has to be built manually, or using custom
and non stable scripts.

I The root file system has to be created from scratch.

I The applications configurations have to be done by hand.

I Each dependency has to be matched manually.

I Integrating softwares from different teams is painful.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 26/253

Benefits

I Build systems automate the process of building a target
system, including the kernel, and sometimes the toolchain.

I They automatically download, configure, compile and install
all the components in the right order, sometimes after
applying patches to fix cross-compiling issues.

I They make sure all the application dependencies are matched.
I They already contain a large number of packages, that should

fit your main requirements, and are easily extensible.
I The build becomes reproducible, which allows to easily change

the configuration of some components, upgrade them, fix
bugs, etc.

I Several configurations can be handled in the same project. It
is possible to generate the same root file system for different
hardware targets or to have a debug image based on the
production one, with some more flags or debugging
applications.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 27/253

Workflow

I Development of each application is done out of the build
system!

I Development is done on an external repository.
I The build system downloads sources from this repository and

start the build following the instructions.

I The build system is used to build the full system and to
provide a working image to the customer.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 28/253

Yocto Project and Poky reference system overview

Yocto Project and
Poky reference
system overview
Free Electrons

© Copyright 2004-2015, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Developers

Free Electrons

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 29/253

Yocto Project and Poky reference system overview

The Yocto Project overview

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 30/253

About

I The Yocto Project is a set of templates, tools and methods
that allow to build custom embedded Linux-based systems.

I It is an open source project initiated by the Linux Foundation
in 2010 and is still managed by one of its fellows: Richard
Purdie.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 31/253

The Yocto Project lexicon

I The core components of the Yocto Project are:
I BitBake, the build engine. It is a task scheduler, like make. It

interprets configuration files and recipes (also called metadata)
to perform a set of tasks, to download, configure and build
specified packages and filesystem images.

I OpenEmbedded-Core, a set of base layers. It is a set of
recipes, layers and classes which are shared between all
OpenEmbedded based systems.

I Poky, the reference system. It is a collection of projects and
tools, used to bootstrap a new distribution based on the Yocto
Project.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 32/253

The Yocto Project lexicon

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 33/253

The Yocto Project lexicon

I Organization of OpenEmbedded-Core:
I Recipes describe how to fetch, configure, compile and package

applications and images. They have a specific syntax.
I Layers are sets of recipes, matching a common purpose. For

Texas Instruments board support, the meta-ti layer is used.
I Multiple layers are used within a same distribution, depending

on the requirements.
I It supports the ARM, MIPS (32 and 64 bits), PowerPC and

x86 (32 and 64 bits) architectures.
I It supports QEMU emulated machines for these architectures.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 34/253

The Yocto Project lexicon

I The Yocto Project is not used as a finite set of layers and
tools.

I Instead, it provides a common base of tools and layers on
top of which custom and specific layers are added, depending
on your target.

I The main required element is Poky, the reference system
which includes OpenEmbedded-Core. Other available tools
are optional, but may be useful in some cases.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 35/253

Example of a Yocto Project based BSP

I To build images for a BeagleBone Black, we need:
I The Poky reference system, containing all common recipes and

tools.
I The meta-ti layer, a set of Texas Instruments specific recipes.

I All modifications are made in the meta-ti layer. Editing Poky
is a no-go!

I We will set up this environment in the lab.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 36/253

Yocto Project and Poky reference system overview

The Poky reference system overview

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 37/253

Download the Poky reference system

I All official projects part of the Yocto Project are available at
http://git.yoctoproject.org/cgit/

I To download the Poky reference system:
git clone -b daisy git://git.yoctoproject.org/poky.git

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 38/253

http://git.yoctoproject.org/cgit/

Poky

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 39/253

Poky source tree 1/2

bitbake/ Holds all scripts used by the BitBake command.
Usually matches the stable release of the BitBake
project.

documentation/ All documentation sources for the Yocto Project
documentation. Can be used to generate nice
PDFs.

meta/ Contains the OpenEmbedded-Core metadata.

meta-skeleton/ Contains template recipes for BSP and kernel
development.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 40/253

Poky source tree 2/2

meta-yocto/ Holds the configuration for the Poky reference
distribution.

meta-yocto-bsp/ Configuration for the Yocto Project reference
hardware board support package.

LICENSE The license under which Poky is distributed (a mix
of GPLv2 and MIT).

oe-init-build-env Script to set up the OpenEmbedded build
environment. It will create the build directory. It
takes an optional parameter which is the build
directory name. By default, this is build. This
script has to be sourced because it changes
environment variables.

scripts Contains scripts used to set up the environment,
development tools, and tools to flash the generated
images on the target.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 41/253

Documentation

I Documentation for the current sources, compiled as a ”mega
manual”, is available at:
http://www.yoctoproject.org/docs/current/mega-

manual/mega-manual.html

I Variables in particular are described in the variable glossary:
http://www.yoctoproject.org/docs/current/ref-

manual/ref-manual.html#ref-variables-glossary

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 42/253

http://www.yoctoproject.org/docs/current/mega-manual/mega-manual.html
http://www.yoctoproject.org/docs/current/mega-manual/mega-manual.html
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#ref-variables-glossary
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#ref-variables-glossary

Using Yocto Project - basics

Using Yocto
Project - basics
Free Electrons

© Copyright 2004-2015, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Developers

Free Electrons

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 43/253

Using Yocto Project - basics

Environment setup

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 44/253

Environment setup

I All Poky files are left unchanged when building a custom
image.

I Specific configuration files and build repositories are stored in
a separate build directory.

I A script, oe-init-build-env, is provided to set up the build
directory and the environment variables (needed to be able to
use the bitbake command for example).

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 45/253

oe-init-build-env

I Modifies the environment: has to be sourced!

I Adds environment variables, used by the build engine.

I Allows you to use commands provided in Poky.

I source ./oe-init-build-env [builddir]

I Sets up a basic build directory, named builddir if it is not
found. If not provided, the default name is build.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 46/253

Common targets

I Common targets are listed when sourcing the script:

core-image-minimal A small image to boot a device and have
access to core command line commands and
services.

core-image-sato Image with Sato support. Sato is a GNOME
mobile-based user interface.

meta-toolchain Includes development headers and libraries to
develop directly on the target.

adt-installer Build the application development toolkit
installer.

meta-ide-support Generates the cross-toolchain. Useful when
working with the SDK.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 47/253

Exported environment variables

BUILDDIR Absolute path of the build directory.

BB ENV EXTRAWHITE List of environment variables to load
from the user’s environment into BitBake data
store.

PATH Contains the directories where executable programs
are located. Absolute paths to scripts/ and
bitbake/bin/ are prepended.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 48/253

Available commands

bitbake The main build engine command. Used to perform
tasks on available packages (download, configure,
compile. . .).

bitbake-* Various specific commands related to the BitBake
build engine.

yocto-layer Command to create a new generic layer.

yocto-bsp Command to create a new generic BSP.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 49/253

The build/ directory 1/2

conf/ Configuration files. Image specific and layer
configuration.

downloads/ Downloaded upstream tarballs of the packages used
in the builds.

sstate-cache/ Shared state cache. Used by all builds.

tmp/ Holds all the build system outputs.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 50/253

The build/ directory 2/2

tmp/buildstats/ Build statistics for all packages built (CPU usage,
elapsed time, host, timestamps. . .).

tmp/deploy/ Final output of the build.

tmp/deploy/images/ Contains the complete images built by the
OpenEmbedded build system. These images are used
to flash the target.

tmp/work/ Set of specific work directories, split by architecture.
They are used to unpack, configure and build the
packages. Contains the patched sources, generated
objects and logs.

tmp/sysroots/ Shared libraries and headers used to compile
packages for the target but also for the host.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 51/253

Using Yocto Project - basics

Configuring the build system

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 52/253

The build/conf/ directory

I The conf/ directory in the build one holds build specific
configuration.

bblayers.conf Explicitly list the available layers.
local.conf Set up the configuration variables relative to the

current user for the build. Configuration
variables can be overridden there.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 53/253

Configuring the build

I The conf/local.conf configuration file holds local user
configuration variables:

BB NUMBER THREADS How many tasks BitBake should
perform in parallel.

PARALLEL MAKE How many processes should be used when
compiling.

MACHINE The machine the target is built for, e.g.
beaglebone.

PACKAGE CLASSES Packages format (deb, ipk or rpm).

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 54/253

Using Yocto Project - basics

Building an image

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 55/253

Compilation

I The compilation is handled by the BitBake build engine.

I Usage: bitbake [options] [recipename/target ...]

I To build a target: bitbake [target]

I Building a minimal image: bitbake core-image-minimal
I This will run a full build for the selected target.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 56/253

Practical lab - First Yocto build

I Download the sources

I Set up the environment

I Configure the build

I Build an image

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 57/253

Using Yocto Project - advanced usage

Using Yocto
Project - advanced
usage
Free Electrons

© Copyright 2004-2015, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Developers

Free Electrons

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 58/253

Advanced build usage and configuration

I Select package variants.

I Manually add packages to the generated image.

I Run specific tasks with BitBake.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 59/253

A little reminder

I Recipes describe how to fetch, configure, compile and install
packages.

I These tasks can be run independently (if their dependencies
are met).

I All available packages in Poky are not selected by default in
the images.

I Some packages may provide the same functionality, e.g.
OpenSSH and Dropbear.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 60/253

Using Yocto Project - advanced usage

Advanced configuration

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 61/253

Overview

I The OpenEmbedded build system uses configuration variables
to hold information.

I Configuration settings are in upper-case by convention, e.g.
CONF_VERSION

I To make configuration easier, it is possible to prepend,
append or define these variables in a conditional way.

I All variables can be overridden or modified in
build/conf/local.conf

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 62/253

Methods and conditions 1/3

I Append the keyword _append to a configuration variable to
add values after the ones previously defined (without space).

I IMAGE_INSTALL_append = " dropbear" adds dropbear to
the packages installed on the image.

I Append the keyword _prepend to add values before the ones
previously defined (without space).

I FILESEXTRAPATHS_prepend := "${THISDIR}/${PN}:"

adds the folder to the set of paths where files are located (in a
recipe).

I Append the machine name to only define a configuration
variable for a given machine. It tries to match with values
from MACHINEOVERRIDES which include MACHINE and
SOC_FAMILY.

I KERNEL_DEVICETREE_beaglebone = "am335x-bone.dtb"

tells to use the kernel device tree am335x-bone.dtb only
when the machine is beaglebone.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 63/253

Methods and conditions 2/3

I The previous methods can be combined.
I If we define:

I IMAGE_INSTALL = "busybox mtd-utils"
I IMAGE_INSTALL_append = " dropbear"
I IMAGE_INSTALL_append_beaglebone = " i2c-tools"

I The resulting configuration variable will be:
I IMAGE_INSTALL = "busybox mtd-utils dropbear i2c-

tools" if the machine being built is beaglebone.
I IMAGE_INSTALL = "busybox mtd-utils dropbear"

otherwise.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 64/253

Methods and conditions 3/3

I The most specific variable takes precedence.

I Example:
IMAGE_INSTALL_beaglebone = "busybox mtd-utils i2c-tools"

IMAGE_INSTALL = "busybox mtd-utils"

I If the machine is beaglebone:
I IMAGE_INSTALL = "busybox mtd-utils i2c-tools"

I Otherwise:
I IMAGE_INSTALL = "busybox mtd-utils"

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 65/253

Operators 1/2

I Various operators can be used to assign values to
configuration variables:

= expand the value when using the variable
:= immediately expand the value

+= append (with space)
=+ prepend (with space)

.= append (without space)
=. prepend (without space)
?= assign if no other value was previously assigned

??= same as previous, with a lower precedence

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 66/253

Operators 2/2

I Avoid using +=, =+, .= and =. in build/conf/local.conf
due to ordering issues.

I If += is parsed before ?=, the latter will be discarded.
I Using _append unconditionally appends the value.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 67/253

Using Yocto Project - advanced usage

Packages variants

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 68/253

Introduction to package variants

I Some packages have the same purpose, and only one can be
used at a time.

I The build system uses virtual packages to reflect this. A
virtual package describes functionalities and several packages
may provide it.

I Only one of the packages that provide the functionality will be
compiled and integrated into the resulting image.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 69/253

Variant examples

I The virtual packages are often in the form virtual/<name>

I Example of available virtual packages with some of their
variants:

I virtual/bootloader: u-boot, u-boot-ti-staging. . .
I virtual/kernel: linux-yocto, linux-yocto-tiny, linux-yocto-rt,

linux-ti-staging. . .
I virtual/libc: eglibc, uclibc
I virtual/xserver: xserver-xorg

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 70/253

Package selection

I Variants are selected thanks to the PREFERRED_PROVIDER

configuration variable.

I The package names have to suffix this variable.
I Examples:

I PREFERRED_PROVIDER_virtual/kernel ?= "linux-ti-

staging"
I PREFERRED_PROVIDER_virtual/libgl = "mesa"

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 71/253

Version selection

I By default, Bitbake will try to build the provider with the
highest version number, unless the recipe defines
DEFAULT_PREFERENCE = "-1"

I When multiple package versions are available, it is also
possible to explicitly pick a given version with
PREFERRED_VERSION.

I The package names have to suffix this variable.

I % can be used as a wildcard.
I Example:

I PREFERRED_VERSION_linux-yocto = "3.10\%"
I PREFERRED_VERSION_python = "2.7.3"

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 72/253

Using Yocto Project - advanced usage

Packages

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 73/253

Selection

I The set of packages installed into the image is defined by the
target you choose (e.g. core-image-minimal).

I It is possible to have a custom set by defining our own target,
and we will see this later.

I When developing or debugging, adding packages can be
useful, without modifying the recipes.

I Packages are controlled by the IMAGE_INSTALL configuration
variable.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 74/253

Exclusion

I The list of packages to install is also filtered using the
PACKAGE_EXCLUDE variable.

I However, if a package needs installing to satisfy a dependency,
it will still be selected.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 75/253

Format

I By default, Poky uses the RPM package format

I OpenEmbedded-Core uses the IPK package format

I To select the generated package formats, use the
PACKAGE_CLASSES variable

I Valid values are: package_rpm, package_deb, package_ipk
(multiple values are OK)

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 76/253

Using Yocto Project - advanced usage

The power of BitBake

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 77/253

Common BitBake options

I BitBake can be used to run a full build for a given target with
bitbake [target].

I But it can be more precise, with optional options:

-c <task> execute the given task
-s list all locally available packages and their

versions
-f force the given task to be run by removing its

stamp file
world keyword for all packages

-b <recipe> execute tasks from the given recipe (without
resolving dependencies).

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 78/253

BitBake examples

I bitbake -c listtasks virtual/kernel
I Gives a list of the available tasks for the package

virtual/kernel. Tasks are prefixed with do_.

I bitbake -c menuconfig virtual/kernel
I Execute the task menuconfig on the kernel package.

I bitbake -f dropbear
I Force the dropbear package to be rebuilt from scratch.

I bitbake -c fetchall world
I Download all package sources and their dependencies.

I For a full description: bitbake --help

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 79/253

shared state cache

I BitBake stores the output of each task in a directory, the
shared state cache. Its location is controlled by the
SSTATE_DIR variable.

I This cache is use to speed up compilation.

I Over time, as you compile more recipes, it can grow quite big.
It is possible to clean old data with:

$./scripts/sstate-cache-management.sh --remove-duplicated -d \

--cache-dir=<SSTATE_DIR>

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 80/253

Using Yocto Project - advanced usage

Network usage

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 81/253

Keeping package sources on a local network

I When fetching source code, BitBake will first search in the
local download directory (DL_DIR).

I It will then try to access mirrors:
I First it tries locations from the PREMIRRORS variable, usually

set by the distribution layer. Poky uses:

PREMIRRORS_prepend = "\

git://.*/.* http://www.yoctoproject.org/sources/ \n \

ftp://.*/.* http://www.yoctoproject.org/sources/ \n \

http://.*/.* http://www.yoctoproject.org/sources/ \n \

https://.*/.* http://www.yoctoproject.org/sources/ \n"

I Then it tries locations from the MIRRORS variable

I Use the own-mirrors class to set your mirrors:

INHERIT += "own-mirrors"

SOURCE_MIRROR_URL = "http://example.com/my-source-mirror"

I If all the mirrors fail, the build will fail.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 82/253

Forbidding network access

I You can use BB_GENERATE_MIRROR_TARBALLS = "1" to
generate tarballs of the git repositories in DL_DIR

I You can also completely disable network access using
BB_NO_NETWORK = "1"

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 83/253

Practical lab - Advanced Yocto configuration

I Modify the build configuration

I Customize the package selection

I Experiment with BitBake

I Mount the root file system over
NFS

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 84/253

Writing recipes - basics

Writing recipes -
basics
Free Electrons

© Copyright 2004-2015, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Developers

Free Electrons

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 85/253

Writing recipes - basics

Recipes: overview

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 86/253

Recipes

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 87/253

Basics

I Recipes describe how to handle a given package.

I A recipe is a set of instructions to describe how to retrieve,
patch, compile, install and generate binary packages for a
given application.

I It also defines what build or runtime dependencies are
required.

I The recipes are parsed by the BitBake build engine.

I The format of a recipe file name is
<package-name>_<version>.bb

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 88/253

Content of a recipe

I A recipe contains configuration variables: name, license,
dependencies, path to retrieve the source code. . .

I It also contains functions that can be run (fetch, configure,
compile. . .) which are called tasks.

I Tasks provide a set of actions to perform.

I Remember the bitbake -c <task> <package> command?

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 89/253

Common variables

I To make it easier to write a recipe, some variables are
automatically available:

PN package name, as specified in the recipe file
name

PV package version, as specified in the recipe file
name

PR package release, defaults to r0

PE package epoch: used to reorder package versions
when the numbering scheme has changed

I When using the recipe bash_4.2.bb:
I ${PN} = "bash"
I ${PV} = "4.2"

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 90/253

Writing recipes - basics

Organization of a recipe

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 91/253

Organization of a recipe

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 92/253

Organization of a recipe

I Many packages have more than one recipe, to support
different versions. In that case the common metadata is
included in each version specific recipe and is in a .inc file:

I <package>.inc: version agnostic metadata.
I <package>_<version>.bb: require <package>.inc and

version specific metadata.

I We can divide a recipe into three main parts:
I The header: what/who
I The sources: where
I The tasks: how

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 93/253

The header

I Configuration variables to describe the package:

DESCRIPTION describes what the software is about
HOMEPAGE URL to the project’s homepage

PRIORITY defaults to optional

SECTION package category (e.g. console/utils)
LICENSE the package’s license

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 94/253

The source locations 1/3

I We need to retrieve both the raw sources from an official
location and the resources needed to configure, patch or
install the package.

I SRC_URI defines where and how to retrieve the needed
elements. It is a set of URI schemes pointing to the resource
locations (local or remote).

I URI scheme syntax: scheme://url;param1;param2
I file://joystick-support.patch
I ${SOURCEFORGE_MIRROR}/<project-name>/${PN}-

${PV}.tar.gz
I git://<url>;protocol=<protocol>;branch=<branch>

When using git, it is necessary to also define SRCREV. If
SRCREV is a hash or a tag not present in master, the branch
parameter is mandatory. When the tag is not in any branch, it
is possible to use nobranch=1

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 95/253

The source locations 2/3

I For the local files, the searched paths are defined in the
FILESPATH variable, custom ones can be added using
FILESEXTRAPATHS. BitBake will also search in subfolders
listed in the OVERRIDES variables in those paths.

I Prepend the paths, as the order matters.

I All local files found in SRC_URI are copied into the package’s
working directory, in build/tmp/work/.

I Files ending in .patch, .diff or having the apply=yes

parameter will be applied after the sources are retrieved and
extracted.

I Patches are applied in the order they are found.
I LIC_FILES_CHKSUM defines the URI pointing to the license

file in the source code as well as its checksum. This allows to
track any license update: if the license changes, the build will
trigger a failure as the checksum won’t be valid anymore.

I LIC_FILES_CHKSUM = "file://gpl.txt;md5=393a5ca..."

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 96/253

The source locations 3/3

I When the sources are provided in a tarball:
I An md5 or an sha256 sum must be provided:

I SRC_URI[md5sum] =

"97b2c3fb082241ab5c56ab728522622b"
I SRC_URI[sha256sum] = "..."

I BitBake expects to find the extracted sources in a directory
called <package-name>-<version>. This is controlled by
the S variable. If the directory has another name, you must
explicitly define S.

I By default, sources are fetched in $BUILDDIR/downloads.
Change it with the DL_DIR variable in conf/local.conf

I Use the PREMIRRORS and MIRRORS variables if you want to
use local mirrors or fallback mirrors.

I To ensure no network access will be done when building, use
BB_NO_NETWORK = "1".

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 97/253

Dependencies

I A package can have dependencies during the build or at
runtime. To reflect these requirements in the recipe, two
variables are used:

DEPENDS List of the package build-time dependencies.
RDEPENDS List of the package runtime dependencies. Must

be package specific (e.g. with _${PN}).

I DEPENDS = "package_b": the local do_configure task
depends on the do_populate_sysroot task of package b.

I RDEPENDS_${PN} = "package_b": the local do_build task
depends on the do_package_write_<archive-format>

task of package b.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 98/253

Tasks

Default tasks already exists, they are defined in classes:

I do fetch

I do unpack

I do patch

I do configure

I do compile

I do install

I do package

I do rootfs

You can get a list of existing tasks for a recipe with:
bitbake <recipe> -c listtasks

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 99/253

Writing tasks 1/3

I Functions use the sh shell syntax, with available
OpenEmbedded variables and internal functions available.

D The destination directory (root directory of
where the files are installed, before creating the
image).

WORKDIR the package’s working directory

I Syntax of a task:

do_task() {

action0

action1

...

}

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 100/253

Writing tasks 2/3

I Example:

do_compile() {

${CC} ${CFLAGS} ${LDFLAGS} -o hello ${WORKDIR}/hello.c

}

do_install() {

install -d ${D}${bindir}

install -m 0755 hello ${D}${bindir}

}

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 101/253

Writing tasks 3/3

I Or using a Makefile:

do_compile() {

oe_runmake

}

do_install() {

install -d ${D}${bindir}

install -m 0755 hello ${D}${bindir}

}

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 102/253

Modifying existing tasks

Tasks can be extended with _prepend or _append

do_install_append() {

install -d ${D}${sysconfdir}

install -m 0755 hello.conf ${D}${sysconfdir}

}

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 103/253

Adding new tasks

Tasks can be added with addtask

do_mkimage () {

uboot-mkimage ...

}

addtask mkimage after do_compile before do_install

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 104/253

Writing recipes - basics

Example of a recipe

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 105/253

Hello world recipe

DESCRIPTION = "Hello world program"

HOMEPAGE = "http://example.net/helloworld/"

PRIORITY = "optional"

SECTION = "examples"

LICENSE = "GPLv2"

SRC_URI = "file://hello.c"

do_compile() {

${CC} ${CFLAGS} ${LDFLAGS} -o hello ${WORKDIR}/hello.c

}

do_install() {

install -d ${D}${bindir}

install -m 0755 hello ${D}${bindir}

}

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 106/253

Writing recipes - basics

Example of a recipe with a version
agnostic part

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 107/253

tar.inc

SUMMARY = "GNU file archiving program"

HOMEPAGE = "http://www.gnu.org/software/tar/"

SECTION = "base"

SRC_URI = "${GNU_MIRROR}/tar/tar-${PV}.tar.bz2"

do_configure() { ... }

do_compile() { ... }

do_install() { ... }

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 108/253

tar 1.17.bb

require tar.inc

LICENSE = "GPLv2"

LIC_FILES_CHKSUM = \

"file://COPYING;md5=59530bdf33659b29e73d4adb9f9f6552"

SRC_URI += "file://avoid_heap_overflow.patch"

SRC_URI[md5sum] = "c6c4f1c075dbf0f75c29737faa58f290"

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 109/253

tar 1.26.bb

require tar.inc

LICENSE = "GPLv3"

LIC_FILES_CHKSUM = \

"file://COPYING;md5=d32239bcb673463ab874e80d47fae504"

SRC_URI[md5sum] = "2cee42a2ff4f1cd4f9298eeeb2264519"

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 110/253

Practical lab - Add a custom application

I Write a recipe for a custom
application

I Integrate it in the image

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 111/253

Writing recipes - advanced

Writing recipes -
advanced
Free Electrons

© Copyright 2004-2015, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Developers

Free Electrons

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 112/253

Writing recipes - advanced

Extending a recipe

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 113/253

Introduction to recipe extensions

I It is a good practice not to modify recipes available in Poky.

I But it is sometimes useful to modify an existing recipe, to
apply a custom patch for example.

I The BitBake build engine allows to modify a recipe by
extending it.

I Multiple extensions can be applied to a recipe.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 114/253

Introduction to recipe extensions

I Metadata can be changed, added or appended.

I Tasks can be added or appended.

I Operators are used extensively, to add, append, prepend or
assign values.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 115/253

Extend a recipe

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 116/253

Extend a recipe

I The recipe extensions end in .bbappend

I Append files must have the same root name as the recipe they
extend.

I example_0.1.bbappend applies to example_0.1.bb

I Append files are version specific. If the recipe is updated to
a newer version, the append files must also be updated.

I If adding new files, the path to their directory must be
prepended to the FILESEXTRAPATHS variable.

I Files are looked up in paths referenced in FILESEXTRAPATHS,
from left to right.

I Prepending a path makes sure it has priority over the recipe’s
one. This allows to override recipes’ files.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 117/253

Extend a recipe: compatibility

I When using a Yocto Project release older than 1.5, the
Metadata revision number must explicitly be incremented in
each append file.

I The revision number is stored in the PRINC variable.
I At the end of the recipe, you must increment it:

I PRINC := "${@int(PRINC) + 1"}

I Since version 1.5, PRINC is automatically taken care of unless
you are building on multiple machines. In that case, use the
PR server, with bitbake-prserv

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 118/253

Writing recipes - advanced

Append file example

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 119/253

Hello world append file

FILESEXTRAPATHS_prepend := "${THISDIR}/files:"

SRC_URI += "file://custom-modification-0.patch \

file://custom-modification-1.patch \

"

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 120/253

Writing recipes - advanced

Advanced recipe configuration

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 121/253

Advanced configuration

I In the real word, more complex configurations are often
needed because recipes may:

I Provide virtual packages
I Inherit generic functions from classes

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 122/253

Providing virtual packages

I BitBake allows to use virtual names instead of the actual
package name. We saw a use case with package variants.

I The virtual name is specified through the PROVIDES variable.

I Several packages can provide the same virtual name. Only one
will be built and installed into the generated image.

I PROVIDES = "virtual/kernel"

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 123/253

Writing recipes - advanced

Classes

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 124/253

Introduction to classes

I Classes provide an abstraction to common code, which can be
re-used in multiple packages.

I Common tasks do not have to be re-developed!

I Any metadata and task which can be put in a recipe can be
used in a class.

I Classes extension is .bbclass

I Classes are located in the classes folder of a layer.
I Packages can use this common code by inheriting a class:

I inherits <class>

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 125/253

Common classes

I Common classes can be found in meta/classes/
I base.bbclass
I kernel.bbclass
I autotools.bbclass
I update-alternatives.bbclass
I useradd.bbclass
I . . .

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 126/253

The base class 1/2

I Every recipe inherits the base class automatically.

I Contains a set of basic common tasks to fetch, unpack or
compile packages.

I Inherits other common classes, providing:
I Mirrors definitions: DEBIAN_MIRROR, GNU_MIRROR,

KERNELORG_MIRROR. . .
I The ability to filter patches by SRC_URI
I Some tasks: clean, listtasks or fetchall.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 127/253

The base class 2/2

I Defines oe_runmake, using EXTRA_OEMAKE to use custom
arguments.

I In Poky, EXTRA_OEMAKE defaults to -e MAKEFLAGS=.
I The -e option to give variables taken from the environment

precedence over variables from makefiles.
I Upstream libraries or softwares often embed their own

Makefile.
I Helps not using hardcoded CC or CFLAGS variables in makefiles.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 128/253

The kernel class

I Used to build Linux kernels.

I Defines tasks to configure, compile and install a kernel and its
modules.

I The kernel is divided into several packages: kernel,
kernel-base, kernel-dev, kernel-modules. . .

I Automatically provides the virtual package virtual/kernel.
I Configuration variables are available:

I KERNEL_IMAGETYPE, defaults to zImage
I KERNEL_EXTRA_ARGS
I INITRAMFS_IMAGE

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 129/253

The autotools class

I Defines tasks and metadata to handle packages using the
autotools build system (autoconf, automake and libtool):

I do_configure: generates the configure script using
autoreconf and loads it with standard arguments or
cross-compilation.

I do_compile: runs make
I do_install: runs make install

I Extra configuration parameters can be passed with
EXTRA_OECONF.

I Compilation flags can be added thanks to the EXTRA_OEMAKE

variable.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 130/253

Example: use the autotools class

DESCRIPTION = "Print a friendly, customizable greeting"

HOMEPAGE = "https://www.gnu.org/software/hello/"

PRIORITY = "optional"

SECTION = "examples"

LICENSE = "GPLv3"

SRC_URI = "${GNU_MIRROR}/hello/hello-${PV}.tar.gz"

SRC_URI[md5sum] = "67607d2616a0faaf5bc94c59dca7c3cb"

SRC_URI[sha256sum] = "ecbb7a2214196c57ff9340aa71458e1559abd38f6d8d169666846935df191ea7"

LIC_FILES_CHKSUM = "file://COPYING;md5=d32239bcb673463ab874e80d47fae504"

inherits autotools

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 131/253

The update-alternative class

I Allows to install multiple binaries having the same
functionality, avoiding conflicts by renaming the binaries.

I Four variables are used to configure the class:

ALTERNATIVE NAME The name of the binary.
ALTERNATIVE LINK The path of the resulting binary.
ALTERNATIVE PATH The path of the real binary.
ALTERNATIVE PRIORITY The alternative priority.

I The command with the highest priority will be used.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 132/253

The useradd class

I This class helps to add users to the resulting image.

I Adding custom users is required by many services to avoid
running them as root.

I USERADD_PACKAGES must be defined when the useradd class
is inherited. Defines the list of packages which needs the user.

I Users and groups will be created before the packages using it
perform their do_install.

I At least one of the two following variables must be set:
I USERADD_PARAM: parameters to pass to useradd.
I GROUPADD_PARAM: parameters to pass to groupadd.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 133/253

Example: use the useradd class

DESCRIPTION = "useradd class usage example"

PRIORITY = "optional"

SECTION = "examples"

LICENSE = "MIT"

SRC_URI = "file://file0"

LIC_FILES_CHKSUM = "file://${COREBASE}/meta/files/common-licenses/MIT;md5=0835ade698e0bc..."

inherits useradd

USERADD_PACKAGES = "${PN}"

USERADD_PARAM = "-u 1000 -d /home/user0 -s /bin/bash user0"

do_install() {

install -m 644 file0 ${D}/home/user0/

chown user0:user0 ${D}/home/user0/file0

}

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 134/253

Writing recipes - advanced

Binary packages

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 135/253

Specifics for binary packages

I It is possible to install binaries into the generated root
filesystem.

I Set the LICENSE to CLOSED.

I Use the do_install task to copy the binaries into the root
file system.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 136/253

Writing recipes - advanced

Debugging recipes

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 137/253

Debugging recipes

I For each task, logs are available in the temp directory in the
work folder of a recipe.

I A development shell, exporting the full environment can be
used to debug build failures:

$ bitbake -c devshell <recipe>

I To understand what a change in a recipe implies, you can
activate build history in local.conf:

INHERIT += "buildhistory"

BUILDHISTORY_COMMIT = "1"

Then use the buildhistory-diff tool to examine
differences between two builds.

I ./scripts/buildhistory-diff

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 138/253

Layers

Layers
Free Electrons

© Copyright 2004-2015, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Developers

Free Electrons

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 139/253

Layers

Introduction to layers

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 140/253

Layers’ principles

I The OpenEmbedded build system manipulates metadata.
I Layers allow to isolate and organize the metadata.

I A layer is a collection of packages and build tasks.

I It is a good practice to begin a layer name with the prefix
meta-.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 141/253

Layers in Poky

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 142/253

Layers in Poky

I The Poky reference system is a set of basic common layers:
I meta
I meta-oe
I meta-skeleton
I meta-yocto
I meta-yocto-bsp

I Poky is not a final set of layers. It is the common base.

I Layers are added when needed.

I When making modifications to the existing recipes or when
adding new packages, it is a good practice not to modify
Poky. Instead you can create your own layers!

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 143/253

Poky

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 144/253

Integrate and use a layer 1/2

I A list of existing and maintained layers can be found at
http://layers.openembedded.org/layerindex/branch/

master/layers/

I Instead of redeveloping layers, always check the work hasn’t
been done by others.

I It takes less time to download a layer providing a package you
need and to add an append file if some modifications are
needed than to do it from scratch.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 145/253

http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/

Integrate and use a layer 2/2

I The location where a layer is saved on the disk doesn’t
matter.

I But a good practice is to save it where all others layers are
stored.

I The only requirement is to let BitBake know about the new
layer:

I The list of layers BitBake uses is defined in
build/conf/bblayers.conf

I To include a new layer, add its absolute path to the BBLAYERS

variable.
I BitBake parses each layer specified in BBLAYERS and adds the

recipes, configurations files and classes it contains.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 146/253

Some useful layers

I Many SoC specific layers are available, providing support for
the boards using these SoCs. Some examples: meta-ti,
meta-fsl-arm and meta-raspberrypi.

I Other layers offer to support packages not available in the
Poky reference system:

I meta-browser: web browsers (Chromium, Firefox).
I meta-filesystems: support for additional filesystems.
I meta-gstreamer10: support for GStreamer 1.0.
I meta-java and meta-oracle-java: Java support.
I meta-linaro-toolchain: Linaro toolchain recipes.
I meta-qt5: QT5 modules.
I meta-realtime: real time tools and test programs.
I meta-telephony and many more. . .

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 147/253

Layers

Creating a layer

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 148/253

Custom layer

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 149/253

Create a custom layer 1/2

I A layer is a set of files and directories and can be created by
hand.

I However, the yocto-layer command helps us create new
layers and ensures this is done right.

I meta- is automatically prepended to the layer name.

I By default yocto-layer creates the new layer in the current
directory.

I yocto-layer create <layer_name> -o <dest_dir>

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 150/253

Create a custom layer 2/2

I The layer created will be pre-filled with the following files:

conf/layer.conf The layer’s configuration. Holds its priority
and generic information. No need to modify it in
many cases.

COPYING.MIT The license under which a layer is released.
By default MIT.

README A basic description of the layer. Contains a
contact e-mail to update.

I By default, all metadata matching ./recipes-*/*/*.bb will
be parsed by the BitBake build engine.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 151/253

Use a layer: best practices

I Do not copy and modify existing recipes from other layers.
Instead use append files.

I Avoid duplicating files. Use append files or explicitly use a
path relative to other layers.

I Save the layer alongside other layers, in OEROOT.

I Use LAYERDEPENDS to explicitly define layer dependencies.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 152/253

Practical lab - Create a custom layer

I Create a layer from scratch

I Add recipes to the new layer

I Integrate it to the build

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 153/253

Practical lab - Extend a recipe

I Apply patches to an existing recipe

I Use a custom configuration file for
an existing recipe

I Extend a recipe to fit your needs

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 154/253

BSP Layers

BSP Layers
Free Electrons

© Copyright 2004-2015, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Developers

Free Electrons

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 155/253

BSP Layers

Introduction to BSP layers in the
Yocto Project

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 156/253

BSP layers

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 157/253

Overview

I BSP layers are device specific layers. They hold metadata
with the purpose of supporting specific hardware devices.

I BSP layers describe the hardware features and often provide a
custom kernel and bootloader with the required modules and
drivers.

I BSP layers can also provide additional software, designed to
take advantage of the hardware features.

I As a layer, it is integrated into the build system as we
previously saw.

I A good practice is to name it meta-<bsp_name>.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 158/253

BSP layers Specifics

I BSP layers are a subset of the layers.
I In addition to package recipes and build tasks, they often

provide:
I Hardware configuration files (machines).
I Bootloader, kernel and display support and configuration.
I Pre-built user binaries.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 159/253

BSP Layers

Generating a new BSP layer

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 160/253

Creating a new BSP 1/3

I A dedicated command is provided to create BSP layers:
yocto-bsp.

I As for the layers, meta- is automatically prepended to the
BSP layer’s name.

I yocto-bsp create <name> <karch>

I karch stands for ”kernel architecture”. You can dump a list
of the available ones by running: yocto-bsp list karch.

I yocto-bsp create felabs arm

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 161/253

Creating a new BSP 2/3

I yocto-bsp will prompt a few questions to help configure the
kernel, bootloader and X support if needed.

I You will also need to choose compiler tuning (cortexa9,
cortexa15, cortexm3, cortexm5. . .).

I And enable some functionalities (keyboard and mouse
support).

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 162/253

Creating a new BSP 3/3

I A new layer is created, named meta-<bsp_name> and
contains the following information:

binary/ Contains bootable images or build filesystem, if
needed.

conf/layer.conf The BSP layer’s configuration.
conf/machine/ Holds the machine configuration files. One is

created by default: <bsp_name>.conf

recipes-* A few recipes are created, thanks to the user
input gathered by the yocto-bsp command.

README The layer’s documentation. This file needs to be
updated.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 163/253

BSP Layers

Hardware configuration files

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 164/253

Overview 1/2

I A layer provides one machine file (hardware configuration file)
per machine it supports.

I These configuration files are stored under
meta-<bsp_name>/conf/machine/*.conf

I The file names correspond to the values set in the MACHINE
configuration variable.

I meta-ti/conf/machine/beaglebone.conf
I MACHINE = "beaglebone"

I Each machine should be described in the README file of the
BSP.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 165/253

Overview 2/2

I The hardware configuration file contains configuration
variables related to the architecture and to the machine
features.

I Some other variables help customize the kernel image or the
filesystems used.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 166/253

Machine configuration

TARGET ARCH The architecture of the device being built.

PREFERRED PROVIDER virtual/kernel The default kernel.

MACHINE FEATURES List of hardware features provided by the
machine, e.g. usbgadget usbhost screen wifi

SERIAL CONSOLE Speed and device for the serial console to
attach. Passed to the kernel as the console

parameter, e.g. 115200 ttyS0

KERNEL IMAGETYPE The type of kernel image to build, e.g.
zImage

IMAGE FSTYPES Format of the root filesystem images to be
created, e.g. tar.bz2 squashfs

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 167/253

MACHINE_FEATURES

I Lists the hardware features provided by the machine.

I These features are used by package recipes to enable or
disable functionalities.

I Some packages are automatically added to the resulting root
filesystem depending on the feature list.

I The feature bluetooth:
I Adds the bluez daemon to be built and added to the image.
I Enables bluetooth support in ConnMan.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 168/253

conf/machine/include/cfa10036.inc

Common definitions for cfa-10036 boards

include conf/machine/include/mxs-base.inc

SOC_FAMILY = "mxs:mx28:cfa10036"

PREFERRED_PROVIDER_virtual/kernel ?= "linux-cfa"

IMAGE_BOOTLOADER = "barebox"

BAREBOX_BINARY = "barebox"

IMXBOOTLETS_MACHINE = "cfa10036"

KERNEL_IMAGETYPE = "zImage"

KERNEL_DEVICETREE = "imx28-cfa10036.dtb"

we need the kernel to be installed in the final image

IMAGE_INSTALL_append = " kernel-image kernel-devicetree"

SDCARD_ROOTFS ?= "${DEPLOY_DIR_IMAGE}/${IMAGE_NAME}.rootfs.ext3"

IMAGE_FSTYPES ?= "tar.bz2 ext3 barebox.mxsboot-sdcard sdcard"

SERIAL_CONSOLE = "115200 ttyAMA0"

MACHINE_FEATURES = "usbgadget usbhost vfat"

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 169/253

conf/machine/cfa10057.conf

#@TYPE: Machine

#@NAME: Crystalfontz CFA-10057

#@SOC: i.MX28

#@DESCRIPTION: Machine configuration for CFA-10057, also called CFA-920

#@MAINTAINER: Alexandre Belloni <alexandre.belloni@free-electrons.com>

include conf/machine/include/cfa10036.inc

KERNEL_DEVICETREE += "imx28-cfa10057.dtb"

MACHINE_FEATURES += "touchscreen"

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 170/253

BSP Layers

Image types

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 171/253

IMAGE_FSTYPES

I Configures the resulting root filesystem image format.

I If more than one format is specified, one image per format will
be generated.

I Image formats instructions are delivered in Poky, thanks to
meta/classes/image_types.bbclass

I Common image formats are: ext2, ext3, ext4, squashfs,
squashfs-xz, cpio, jffs2, ubifs, tar.bz2, tar.gz. . .

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 172/253

Creating an image type

I If you have a particular layout on your storage (for example
bootloader location on an SD card), you may want to create
your own image type.

I This is done through a class that inherits from image_types.

I It has to define a function named IMAGE_CMD_<type>.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 173/253

wic

I A new way of creating images has been introduced recently:
wic

I It is a tool that can create a flashable image from the
compiled packages and artifacts.

I It can create partitions

I It can select which files are located in which partition through
the use of plugins.

I The final image layout is described in a .wks file.

I It can be extended in any layer.

I Usage example:

$ wic create mkefidisk -e core-image-base

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 174/253

BSP Layers

Formfactor

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 175/253

Overview

I The yocto-bsp command generates a formfactor recipe.

I recipes-bsp/formfactor/formfactor_0.0.bbappend

I formfactor is a recipe providing information about the
hardware that is not described by other sources such as as the
kernel.

I This configuration is defined in the recipe in: recipes-

bsp/formfactor/formfactor/<machine>/machconfig

I Default values are defined in:
meta/recipes-bsp/formfactor/files/config

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 176/253

Formfactor example

HAVE_TOUCHSCREEN=1

HAVE_KEYBOARD=1

DISPLAY_CAN_ROTATE=0

DISPLAY_ORIENTATION=0

DISPLAY_WIDTH_PIXELS=640

DISPLAY_HEIGHT_PIXELS=480

DISPLAY_BPP=16

DISPLAY_DPI=150

DISPLAY_SUBPIXEL_ORDER=vrgb

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 177/253

BSP Layers

Bootloader

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 178/253

Default bootloader 1/2

I By default the bootloader used is the mainline version of
U-Boot, with a fixed version (per Poky release).

I All the magic is done in
meta/recipes-bsp/u-boot/u-boot.inc

I Some configuration variables used by the U-Boot recipe can
be customized, in the machine file.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 179/253

Default bootloader 2/2

SPL BINARY If an SPL is built, describes the name of the output
binary. Defaults to an empty string.

UBOOT SUFFIX bin (default) or img.

UBOOT MACHINE The target used to build the configuration.

UBOOT ENTRYPOINT The bootloader entry point.

UBOOT LOADADDRESS The bootloader load address.

UBOOT MAKE TARGET Make target when building the
bootloader. Defaults to all.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 180/253

Customize the bootloader

I By default no recipe is added to customize the bootloader.

I It is possible to do so by creating an extended recipe and to
append extra metadata to the original one.

I This works well when using a mainline version of U-Boot.
I Otherwise it is possible to create a custom recipe.

I Try to still use meta/recipes-bsp/u-boot/u-boot.inc

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 181/253

BSP Layers

Kernel

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 182/253

Linux kernel recipes in Yocto

I There are basically two ways of compiling a kernel in the
Yocto Project:

I By using the linux-yocto packages, provided in Poky.
I By using a fully custom kernel recipe.

I The kernel used is selected in the machine file thanks to:
PREFERRED_PROVIDER_virtual/kernel

I Its version if defined with:
PREFERRED_VERSION_<kernel_provider>

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 183/253

Linux Yocto 1/4

I linux-yocto is a generic set of recipes for building mainline
Linux kernel images.

I The yocto-bsp tool creates basic appended recipes to allow
to extend the linux-yocto ones.

I meta-<bsp_name>/recipes-kernel/linux/linux-

yocto_*.bbappend

I PREFERRED_PROVIDER_virtual/kernel = "linux-yocto"

I PREFERRED_VERSION_linux-yocto = "3.14\%"

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 184/253

Linux Yocto 2/4

I Like other appended recipes, patches can be added by filling
SRC_URI with .patch and/or .diff files.

I The kernel configuration must also be provided, and the file
containing it must be called defconfig.

I This can be generated from a Linux source tree, by using
make savedefconfig

I The configuration can be split in several files, by using the
.cfg extension. It is the best practice when adding new
features:

SRC_URI += "file://defconfig \

file://nand-support.cfg \

file://ethernet-support.cfg"

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 185/253

Linux Yocto 3/4

I Configuration fragments can be generated directly with the
bitbake command:

1. Configure the kernel following its recipe instructions:
bitbake -c kernel_configme linux-yocto

2. Edit the configuration:
bitbake -c menuconfig linux-yocto

3. Save the configuration differences:
bitbake -c diffconfig linux-yocto

I The differences will be saved at $WORKDIR/fragment.cfg

I After integrating configuration fragments into the appended
recipe, you can check everything is fine by running:
bitbake -c kernel_configcheck -f linux-yocto

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 186/253

Linux Yocto 4/4

I Another way of configuring linux-yocto is by using
Advanced Metadata.

I It is a powerful way of splitting the configuration and the
patches into several pieces.

I It is designed to provide a very configurable kernel.

I The full documentation can be found at
https://www.yoctoproject.org/docs/1.6.1/kernel-

dev/kernel-dev.html#kernel-dev-advanced

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 187/253

https://www.yoctoproject.org/docs/1.6.1/kernel-dev/kernel-dev.html#kernel-dev-advanced
https://www.yoctoproject.org/docs/1.6.1/kernel-dev/kernel-dev.html#kernel-dev-advanced

Linux Yocto: Kernel Metadata 1/4

I Kernel Metadata is a way to organize and to split the kernel
configuration and patches in little pieces each providing
support for one feature.

I Two main configuration variables help taking advantage of
this:

LINUX KERNEL TYPE standard (default), tiny or
preempt-rt

I standard: generic Linux kernel policy.
I tiny: bare minimum configuration, for small

kernels.
I preempt-rt: applies the PREEMPT_RT patch.

KERNEL FEATURES List of features to enable. Features are
sets of patches and configuration fragments.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 188/253

Linux Yocto: Kernel Metadata 2/4

I Kernel Metadata can be stored in the linux-yocto recipe
space.

I It must be under $FILESEXTRAPATHS. A best practice is to
follow this directory hierarchy:

bsp/
cfg/

features/
ktypes/

patches/
I Kernel Metadata are divided into 3 file types:

I Description files, ending in .scc
I Configuration fragments
I Patches

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 189/253

Linux Yocto: Kernel Metadata 3/4

I Kernel Metadata description files have their own syntax, used
to describe the feature provided and which patches and
configuration fragments to use.

I Simple example, features/smp.scc

define KFEATURE_DESCRIPTION "Enable SMP"

kconf hardware smp.cfg

patch smp-support.patch

I To integrate the feature into the kernel image:
KERNEL_FEATURES += "features/smp.scc"

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 190/253

Linux Yocto: Kernel Metadata 4/4

I .scc syntax description:

branch <ref> Create a new branch relative to the current
one.

define Defines variables.
include <scc file> Include another description file.

Parsed inline.
kconf [hardware|non-hardware] <cfg file> Queues a

configuration fragment, to merge it into Linux’s
.config

git merge <branch> Merge branch into the current git
branch.

patch <patch file> Applies patch file to the current
git branch.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 191/253

Practical lab - Create a custom machine configuration

I Write a machine configuration

I Understand how the target
architecture is chosen

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 192/253

Distro Layers

Distro Layers
Free Electrons

© Copyright 2004-2015, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Developers

Free Electrons

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 193/253

Distro Layers

Distro Layers

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 194/253

Distro layers

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 195/253

Distro layers

I You can create a new distribution by using a Distro layer.

I This allows to change the defaults that are used by Poky.

I It is useful to distribute changes that have been made in
local.conf

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 196/253

Best practice

I A distro layer is used to provides policy configurations for a
custom distribution.

I It is a best practice to separate the distro layer from the
custom layers you may create and use.

I It often contains:
I Configuration files.
I Specific classes.
I Distribution specific recipes: initialization scripts, splash screen

packages. . .

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 197/253

Creating a Distro layer

I The configuration file for the distro layer is
conf/distro/<distro>.conf

I This file must define the DISTRO variable.

I It is possible to inherit configuration from an existing distro
layer.

I You can also use all the DISTRO_* variables.

I Use DISTRO = "<distro>" in local.conf to use your
distro configuration.

require conf/distro/poky.conf

DISTRO = "distro"

DISTRO_NAME = "distro description"

DISTRO_VERSION = "1.0"

MAINTAINER = "..."

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 198/253

Images

Images
Free Electrons

© Copyright 2004-2015, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Developers

Free Electrons

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 199/253

Images

Introduction to images

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 200/253

Overview 1/3

I An image is the top level recipe and is used alongside the
machine definition.

I Whereas the machine describes the hardware used and its
capabilities, the image is architecture agnostic and defines
how the root filesystem is built, with what packages.

I By default, several images are provided in Poky:
I meta*/recipes*/images/*.bb

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 201/253

Overview 2/3

I Common images are:

core-image-base Console-only image, with full support of the
hardware.

core-image-minimal Small image, capable of booting a device.
core-image-minimal-dev Small image with extra debug

symbols, tools and libraries.
core-image-x11 Image with basic X11 support.
core-image-rt core-image-minimal with real time tools and

test suite.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 202/253

Overview 3/3

I An image is no more than a recipe.

I It has a description, a license and inherits the core-image

class.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 203/253

Organization of an image recipe

I Some special configuration variables are used to describe an
image:

IMAGE BASENAME The name of the output image files.
Defaults to ${PN}.

IMAGE INSTALL List of packages and package groups to
install in the generated image.

IMAGE ROOTFS SIZE The final root filesystem size.
IMAGE FEATURES List of features to enable in the image.
IMAGE FSTYPES List of formats the OpenEmbedded build

system will use to create images.
IMAGE LINGUAS List of the locales to be supported in the

image.
IMAGE PKGTYPE Package type used by the build system.

One of deb, rpm, ipk and tar.
IMAGE POSTPROCESS COMMAND Shell commands to

run at post process.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 204/253

Example of an image

require recipes-core/images/core-image-minimal.bb

DESCRIPTION = "Example image"

IMAGE_INSTALL += " ninvaders"

IMAGE_FSTYPES = "tar.bz2 cpio squashfs"

IMAGE_PKGTYPE = "deb"

LICENSE = "MIT"

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 205/253

Images

Package groups

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 206/253

Overview

I Package groups are a way to group packages by
functionality or common purpose.

I Package groups are used in image recipes to help building the
list of packages to install.

I They can be found under
meta*/recipes-core/packagegroups/

I A package group is yet another recipe.

I The prefix packagegroup- is always used.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 207/253

Common package groups

I packagegroup-core-boot

I packagegroup-core-buildessential

I packagegroup-core-nfs

I packagegroup-core-ssh-dropbear

I packagegroup-core-ssh-openssh

I packagegroup-core-tools-debug

I packagegroup-core-tools-profile

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 208/253

Example

meta/recipes-core/packagegroups/packagegroup-core-

nfs.bb:

DESCRIPTION = "NFS package groups"

LICENSE = "MIT"

PR = "r2"

inherit packagegroup

PACKAGES = "${PN}-server"

SUMMARY_${PN}-server = "NFS server"

RDEPENDS_${PN}-server = "\

nfs-utils \

nfs-utils-client \

"

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 209/253

Practical lab - Create a custom image

I Write an image recipe

I Choose the packages to install

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 210/253

Creating and using an SDK

Creating and using
an SDK
Free Electrons

© Copyright 2004-2015, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Developers

Free Electrons

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 211/253

Creating and using an SDK

Introduction to the SDK

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 212/253

Overview

I An SDK (Software Development Kit) is a set of tools allowing
the development of applications for a given target (operating
system, platform, environment. . .).

I It generally provides a set of of tools including:
I Compilers or cross-compilers.
I Linkers.
I Library headers.
I Debuggers.
I Custom utilities.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 213/253

Advantages

I The Yocto Project is often used to build images for embedded
targets.

I This often requires a special toolchain, to cross compile the
software.

I Some libraries headers may be specific to the target and not
available on the developers’ computers.

I A self-sufficient environment makes development easier and
avoids many errors.

I Long manuals are not necessary, the only thing required is the
SDK!

I Using the SDK to develop an application limits the risks of
dependency issues when running it on the target.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 214/253

The Poky SDK

I The Poky reference system is used to generate images, by
building many applications and doing a lot configuration work.

I When developing an application, we only care about the
application itself.

I We want to be able to develop, test and debug easily.

I The Poky SDK is an application development SDK, which can
be generated to provide a full environment compatible with
the target.

I It includes a toolchain, libraries headers and all the needed
tools.

I This SDK can be installed on any computer and is
self-contained. The presence of Poky is not required for the
SDK to fully work.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 215/253

Creating and using an SDK

Generating an SDK

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 216/253

Available SDKs

I Two different SDKs can be generated:
I A generic SDK, including:

I A toolchain.
I Common tools.
I A collection of basic libraries.

I An image-based SDK, including:
I The generic SDK.
I The sysroot matching the target root filesystem.
I Its toolchain is self-contained (linked to an SDK embedded

libc).

I The SDKs generated with Poky are distributed in the form of
a shell script.

I Executing this script extracts the tools and sets up the
environment.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 217/253

The generic SDK

I Mainly used for low-level development, where only the
toolchain is needed:

I Bootloader development.
I Kernel development.

I The recipe meta-toolchain generates this SDK:
I bitbake meta-toolchain

I The generated script, containing all the tools for this SDK, is
in:

I build/tmp/deploy/sdk
I Example: poky-eglibc-x86_64-meta-toolchain-i586-

toolchain-1.5.3.sh

I The SDK will be configured to be compatible with the
specified MACHINE.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 218/253

The image-based SDK

I Used to develop applications running on the target.
I One task is dedicated to the process. The task behavior can

vary between the images.
I populate_sdk

I To generate an SDK for core-image-minimal:
I bitbake -c populate_sdk core-image-minimal

I The generated script, containing all the tools for this SDK, is
in:

I build/tmp/deploy/sdk
I Example: poky-eglibc-x86_64-core-image-minimal-

i586-toolchain-1.5.3.sh

I The SDK will be configured to be compatible with the
specified MACHINE.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 219/253

Creating and using an SDK

Use the SDK

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 220/253

SDK format

I Both SDKs are distributed as bash scripts.

I These scripts self extract themselves to install the toolchains
and the files they provide.

I To install an SDK, retrieve the generated script and execute
it.

I The script asks where to install the SDK. Defaults to
/opt/poky/<version>

I Example: /opt/poky/1.5.3

$./poky-eglibc-x86_64-meta-toolchain-i586-toolchain-1.5.3.sh

Enter target directory for SDK (default: /opt/poky/1.5.3):

You are about to install the SDK to "/opt/poky/1.5.3". Proceed[Y/n]?

Extracting SDK...done

Setting it up...done

SDK has been successfully set up and is ready to be used.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 221/253

Use the SDK

I To use the SDK, a script is available to set up the
environment:

$ cd /opt/poky/1.5.3

$ source ./environment-setup-i586-poky-linux

I The PATH is updated to take into account the binaries
installed alongside the SDK.

I Environment variables are exported to help using the tools.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 222/253

SDK installation

environment-setup-i586-poky-linux Exports environment variables.

site-config-i586-poky-linux Variables used during the toolchain
creation

sysroots SDK binaries, headers and libraries. Contains one
directory for the host and one for the target.

version-i586-poky-linux Version information.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 223/253

SDK environment variables

CC Full path to the C compiler binary.

CFLAGS C flags, used by the C compiler.

CXX C++ compiler.

CXXFLAGS C++ flags, used by CPP

LD Linker.

LDFLAGS Link flags, used by the linker.

ARCH For kernel compilation.

CROSS COMPILE For kernel compilation.

GDB SDK GNU Debugger.

OBJDUMP SDK objdump.

I To see the full list, open the environment script.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 224/253

Examples

I To build an application for the target:

$ $CC -o example example.c

I The LDFLAGS variables is set to be used with the C compiler
(gcc).

I When building the Linux kernel, unset this variable.

$ unset LDFLAGS

$ make menuconfig

$ make

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 225/253

Creating and using an SDK

Eclipse integration

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 226/253

The Yocto Project ADT

I Eclipse can be used as a graphical interface to the Yocto
SDK.

I To modify and develop recipes and applications.
I To compile packages and build images.
I To debug the system.

I This is done thanks to an Eclipse Yocto plugin.

I The SDK and the Eclipse plugin is called the Yocto
Application Development Toolkit.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 227/253

Installation

I The Eclipse Yocto plugin can be installed from a pre-built
version available at:

I http://downloads.yoctoproject.org/releases/

eclipse-plugin/1.6.1/kepler

I Or it can be compiled from the official repository:
I git://git.yoctoproject.org/eclipse-poky-kepler

I The full explanations to install and use the Eclipse Yocto
plugin are given in the labs.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 228/253

Practical lab - Create and use a Poky SDK

I Generate an SDK

I Compile an application for the
target in the SDK

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 229/253

Practical lab - Use the Yocto SDK through Eclipse

I Install the Yocto Eclipse plugin

I Configure the plugin to work with
the previously used environment

I Use Eclipse to modify recipes

I Build an image from Eclipse

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 230/253

Licensing

Licensing
Free Electrons

© Copyright 2004-2015, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Developers

Free Electrons

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 231/253

Licensing

Managing licenses

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 232/253

Tracking license changes

I The license of an external project may change at some point.

I The LIC_FILES_CHKSUM tracks changes in the license files.
I If the license’s checksum changes, the build will fail.

I The recipe needs to be updated.

LIC_FILES_CHKSUM = " \

file://COPYING;md5=... \

file://src/file.c;beginline=3;endline=21;md5=..."

I LIC_FILES_CHKSUM is mandatory in every recipe, unless
LICENSE is set to CLOSED.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 233/253

Package exclusion

I We may not want some packages due to their licenses.

I To exclude a specific license, use INCOMPATIBLE_LICENSE

I To exclude all GPLv3 packages:

INCOMPATIBLE_LICENSE = "GPLv3"

I License names are the ones used in the LICENSE variable.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 234/253

Commercial licenses

I By default the build system does not include commercial
components.

I Packages with a commercial component define:

LICENSE_FLAGS = "commercial"

I To build a package with a commercial component, the
package must be in the LICENSE_FLAGS_WHITELIST variable.

I Example, gst-plugins-ugly:

LICENSE_FLAGS_WHITELIST = "commercial_gst-plugins-ugly"

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 235/253

Writing recipes - going further

Writing recipes -
going further
Free Electrons

© Copyright 2004-2015, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Developers

Free Electrons

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 236/253

Writing recipes - going further

Splitting packages

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 237/253

Benefits

I Packages can be split.

I Useful when a single remote repository provides multiple
binaries or libraries.

I The list of packages to provide is defined by the PACKAGES

variable.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 238/253

Example

I The kexec tools provides kexec and kdump:

require kexec-tools.inc

export LDFLAGS = "-L${STAGING_LIBDIR}"

EXTRA_OECONF = " --with-zlib=yes"

SRC_URI[md5sum] = "b9f2a3ba0ba9c78625ee7a50532500d8"

SRC_URI[sha256sum] = "..."

PACKAGES =+ "kexec kdump"

FILES_kexec = "${sbindir}/kexec"

FILES_kdump = "${sbindir}/kdump"

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 239/253

Writing recipes - going further

Packages features

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 240/253

Benefits

I Features can be built depending on the needs.

I This allows to avoid compiling all features in a software
component when only a few are required.

I A good example is ConnMan: Bluetooth support is built only if
there is Bluetooth on the target.

I The PACKAGECONFIG variable is used to configure the build on
a per feature granularity, for packages.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 241/253

PACKAGECONFIG

I PACKAGECONFIG takes the list of features to enable.
I PACKAGECONFIG[feature] takes up to four arguments,

separated by commas:

1. Argument used by the configuration task if the feature is
enabled (EXTRA_OECONF).

2. Argument added to EXTRA_OECONF if the feature is disabled.
3. Additional build dependency (DEPENDS), if enabled.
4. Additional runtime dependency (RDEPENDS), if enabled.

I Unused arguments can be omitted or left blank.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 242/253

Example: from ConnMan

PACKAGECONFIG ??= "wifi openvpn"

PACKAGECONFIG[wifi] = "--enable-wifi, \

--disable-wifi, \

wpa-supplicant"

PACKAGECONFIG[bluetooth] = "--enable-bluetooth, \

--disable-bluetooth, \

bluez4"

PACKAGECONFIG[openvpn] = "--enable-openvpn, \

--with-openvpn=..., \

--disable-openvpn, \

, \

openvpn"

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 243/253

Writing recipes - going further

Conditional features

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 244/253

Conditional features

I Some values can be set dynamically, thanks to a set of
functions:

I base_contains(variable, checkval, trueval,

falseval, d): if checkval is found in variable, trueval
is returned; otherwise falseval is used.

I Example:

PACKAGECONFIG ??= " \

${@base_contains(’DISTRO_FEATURES’, ’wifi’,’wifi’, ’’, d)} \

${@base_contains(’DISTRO_FEATURES’, ’bluetooth’,’bluetooth’, ’’, d)} \

${@base_contains(’DISTRO_FEATURES’, ’3g’,’3g’, ’’, d)}"

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 245/253

Writing recipes - going further

Applying patches

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 246/253

Applying patches

I Files ending in .patch, .diff or with the apply=yes

parameter will be applied during the do_patch task.

I It is possible to select which tool will be used to apply the
patches listed in SRC_URI variable with PATCHTOOL.

I By default, PATCHTOOL = ’quilt’ in Poky.

I Possible values: git, patch and quilt.

I See meta/classes/patch.bbclass

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 247/253

Resolving conflicts

I The PATCHRESOLVE variable defines how to handle conflicts
when applying patches.

I It has two valid values:
I noop: the build fails if a patch cannot be successfully applied.
I user: a shell is launched to resolve manually the conflicts.

I By default, PATCHRESOLVE = "noop" in meta-yocto.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 248/253

Yocto Project Resources

Yocto Project
Resources
Free Electrons

© Copyright 2004-2015, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Developers

Free Electrons

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 249/253

Yocto Project documentation

I https://www.yoctoproject.org/documentation

I Wiki: https://wiki.yoctoproject.org/wiki/Main_Page

I http://packages.yoctoproject.org

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 250/253

https://www.yoctoproject.org/documentation
https://wiki.yoctoproject.org/wiki/Main_Page
http://packages.yoctoproject.org

Useful Reading

Embedded Linux Development with Yocto
Project, July 2014

I https://www.packtpub.com/

application-development/embedded-

linux-development-yocto-project

I By Otavio Salvador and Daiane Angolini

I From basic to advanced usage, helps
writing better, more flexible recipes. A
good reference to jumpstart your Yocto
Project development.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 251/253

https://www.packtpub.com/application-development/embedded-linux-development-yocto-project
https://www.packtpub.com/application-development/embedded-linux-development-yocto-project
https://www.packtpub.com/application-development/embedded-linux-development-yocto-project

Last slides

Last slides
Free Electrons

© Copyright 2004-2015, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Developers

Free Electrons

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 252/253

Last slide

Thank you!
And may the Source be with you

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 253/253

	Generic course information
	Introduction to embedded Linux build systems
	Embedded Linux distribution projects
	Build system benefits

	Yocto Project and Poky reference system overview
	The Yocto Project overview
	The Poky reference system overview

	Using Yocto Project - basics
	Environment setup
	Configuring the build system
	Building an image

	Using Yocto Project - advanced usage
	Advanced configuration
	Packages variants
	Packages
	The power of BitBake
	Network usage

	Writing recipes - basics
	Recipes: overview
	Organization of a recipe
	Example of a recipe
	Example of a recipe with a version agnostic part

	Writing recipes - advanced
	Extending a recipe
	Append file example
	Advanced recipe configuration
	Classes
	Binary packages
	Debugging recipes

	Layers
	Introduction to layers
	Creating a layer

	BSP Layers
	Introduction to BSP layers in the Yocto Project
	Generating a new BSP layer
	Hardware configuration files
	Image types
	Formfactor
	Bootloader
	Kernel

	Distro Layers
	Distro Layers

	Images
	Introduction to images
	Package groups

	Creating and using an SDK
	Introduction to the SDK
	Generating an SDK
	Use the SDK
	Eclipse integration

	Licensing
	Managing licenses

	Writing recipes - going further
	Splitting packages
	Packages features
	Conditional features
	Applying patches

	Yocto Project Resources
	Last slides

